5 Multiproxy Analysis vs. Nesting Pairs
Data used in this analysis can be found in the github repo in the following files: FileS2_MonitoringData.csv
and FileS9_ZScores_CSM-IMP.csv
.
5.2 Example for calculating Z-Scores
Here is one example of how you can calculate the average d15N and standard deviation of d15N:
# Define your data
d15N <- IMP2_isotopes$d15N
percentN <- IMP2_isotopes$N.percent
d13C <- IMP2_isotopes$d15N
percentC <- IMP2_isotopes$C.percent
# calculate z-scores for d15N and d13C
Zscore_isotopes <- IMP2_isotopes %>%
mutate(d15N_z = (d15N - mean(d15N))/sd(d15N),
d13C_z = (d13C - mean(d13C))/sd(d13C),
percentN_z = (percentN - mean(percentN))/sd(percentN),
percentN_z = (percentN - mean(percentN))/sd(percentN))
Export the values to a .csv or excel file
5.3 Load the data
Here I load data for the impact site only. After calculating z-scores for the d15N, d15C, chlorophyll a, phosphorus, cadmium , zinc and diatom abundance data (only for S.construens), I arranged it into a file called z-scores.csv
.
The .csv file I am working is called z-scores.csv
, set up like this:
midpoint | d15N | z_d15N | chla | z_chla | etc… | Mean |
---|---|---|---|---|---|---|
- | - | - | - | - | - | - |
NOTE: Make sure the file contains a column to plot arithmetic mean.
Load the data in R
The colony population data can be found in the Census data file, and contains counts for each species by year.
Year | Northern gannet | Black-legged kittiwake | Common murre |
---|---|---|---|
1883 | |||
… | |||
2023 |
Read the population data into R from another .csv file, mine is in a file called /Data
5.4 Plot the proxy data
Plot each of your proxies using both geom_line
and geom_point
to plot a line graph for your data.
z_plot <- ggplot() +
geom_smooth(zscores, mapping=aes(x=year, y=mean), method="lm", na.rm=TRUE, formula = y ~ poly(x, 2), color="lightgrey", fill="lightgrey", linetype = 0) +
scale_x_continuous(breaks=seq(1800,2023, by=10), limits = c(1800,2025), position="top") +
#plot mean line (move this to the last line if you want the mean line to lay overtop your proxy data)
geom_line(data=zscores[!is.na(zscores$mean),], mapping=aes(x=year, y=mean), color="black", linewidth=1,) +
#plot chlorophyll data
geom_line(data=zscores[!is.na(zscores$z_chla),], mapping=aes(x=year, y=z_chla), color="green") +
geom_point(data=zscores, mapping=aes(x=year, y=z_chla), color="green", shape=16, size=2) +
#plot d15N data
geom_line(data=zscores[!is.na(zscores$z_d15N),], mapping=aes(x=year, y=z_d15N), color="blue3") +
geom_point(data=zscores, mapping=aes(x=year, y=z_d15N), color="blue3", shape=4, size=2) +
#plot Phosphorus data
geom_line(data=zscores[!is.na(zscores$z_P),], mapping=aes(x=year, y=z_P), color="orange") +
geom_point(data=zscores, mapping=aes(x=year, y=z_P), color="orange", shape=15, size=2) +
#plot Zinc data
geom_line(data=zscores[!is.na(zscores$z_Zn),], mapping=aes(x=year, y=z_Zn), color="firebrick1") +
geom_point(data=zscores, mapping=aes(x=year, y=z_Zn), color="firebrick1", shape=25, size=2) +
#plot Cadmium data
geom_line(data=zscores[!is.na(zscores$Z_Cd),], mapping=aes(x=year, y=Z_Cd), color="red4") +
geom_point(data=zscores, mapping=aes(x=year, y=Z_Cd), color="red4", shape=17, size=2) +
#plot diatom data
geom_line(data=zscores[!is.na(zscores$z_S.cons),], mapping=aes(x=year, y=z_S.cons), color="mediumaquamarine") +
geom_point(data=zscores, mapping=aes(x=year, y=z_S.cons), color="mediumaquamarine", shape=20, size=2) +
#set a theme
theme_classic()+
theme(panel.grid.major.x=element_line(),
text = element_text(size = 12),
axis.text.x.top= element_text(vjust=0.5, angle=90, color = "black"),
axis.text.y = element_text(color = "black"),
axis.title.x = element_blank())+
#set axis labels
xlab(NULL)+
ylab("z-score")
Run z_plot
to view the figure. Here I used !is.na
to ignore all NA values in the dataset.
You can use HTML color codes in place for R colors for more options.
5.5 Plot the population data
Define each variable
NOGA <- popn$Northern.gannet
COMU <- popn$Common.murre
BLKI <- popn$Black.legged.kittiwake
year <- popn$Year
Plot using ggplot
popn_plot <- ggplot(popn, (aes(x=year))) +
geom_point(aes(y=BLKI), width=1, color="hotpink3", size=2) +
geom_line(aes(y=BLKI), position = "stack", color = "hotpink3", size = 0.5, linetype="dotted") +
geom_point(aes(y=NOGA), width=1, color="slateblue4", size=2) +
geom_line(aes(y=NOGA), position = "stack", color = "slateblue4", size = 0.5, linetype="dotted") +
geom_point(aes(y=COMU), width=1, color="olivedrab4", size=2) +
geom_line(aes(y=COMU), position = "stack", color = "olivedrab4", size = 0.5, linetype="dotted") +
scale_x_continuous(breaks=seq(1800,2023, by=10), limits = c(1800,2025), position="bottom") +
scale_y_continuous(breaks=seq(0,16000, by=4000)) +
ylab("nesting pairs")+
theme_classic()+
theme(panel.grid.major.x=element_line(),
text = element_text(size = 12, color = "black"),
axis.text.x = element_text(margin = margin(t=1), color = "black"),
axis.text.y = element_text(margin = margin(t=1), color = "black"),
axis.title.x = element_blank(),
axis.text.x.bottom = element_text(vjust=0.5, angle=90))
5.6 Arrange the figures together
Plot both your population counts and proxy data onto the same figure
5.7 Final Figure
![[Bosch et al. 2024]: Summary of ornithogenic proxies measured in the impact pond, with Z-score values represented as points [top figure]. X-axis dates are extrapolated from 210Pb dates via polynomial regression. The thick black line shows the calculated arithmetic mean, fitted with a polynomial regression using ggplot2 in R. and the shaded grey area represents the confidence interval. A cut-off was set at ca. 1808 CE (~11.25 cm) to ensure data continuity due to variations in proxy data depth. Historical monitoring data for Northern gannets (Morus bassanus), common murres (Uria aalge) and black-legged kittiwakes (Rissa tridactyla) nesting on Bird Rock and surrounding mainland areas (File S1) [bottom figure].](images/Fig2_ZScore.png)
Figure 5.1: [Bosch et al. 2024]: Summary of ornithogenic proxies measured in the impact pond, with Z-score values represented as points [top figure]. X-axis dates are extrapolated from 210Pb dates via polynomial regression. The thick black line shows the calculated arithmetic mean, fitted with a polynomial regression using ggplot2 in R. and the shaded grey area represents the confidence interval. A cut-off was set at ca. 1808 CE (~11.25 cm) to ensure data continuity due to variations in proxy data depth. Historical monitoring data for Northern gannets (Morus bassanus), common murres (Uria aalge) and black-legged kittiwakes (Rissa tridactyla) nesting on Bird Rock and surrounding mainland areas (File S1) [bottom figure].