7 Proportions Wet

Within each 2hr period we need to assess:
•   Proportion wet or time wet ((Count wets in 2hr period * 30sec) / 72000sec)

Calculate proportions for downsampled data where the sum of wets was calculated in 2hr bins

7.1 Calclate Proportions

Function to calculate proportion of wet time on the downsampled data:

calc_prop <- function(deg_data, bin_time = bin_time) {
  
  bird_id <- deg_data$bird_id[1]
  
  #start by calculating metrics for a single 2hr bin
  prop_data <- deg_data %>%
    mutate(
      bird_id = bird_id,
      #proportion of time wet in bin_time period (wets*30 converts wetness level into secs spent wet)
      # (600sec per 10min interval) / 20 = 30 seconds per unit 
      prop_wet = (wets * 30) / (bin_time * 3600) #convert wets to secs and divide by bin_length in secs
      )

  return(prop_data)
}

Applying the function to our DEG files downsampled by 2hrs using sum of wets:

plan(multisession, workers = 4)

bin_time = 2

deg_props_2hrs <- future_map_dfr(deg_2hrs, calc_prop, bin_time = bin_time, .progress = TRUE)

deg_props_2hrs
## # A tibble: 1,066,147 × 6
##    bird_id date       start_time end_time  wets prop_wet
##    <chr>   <date>     <chr>      <chr>    <dbl>    <dbl>
##  1 BH584   2017-09-20 00:00:00   01:59:59     0   0     
##  2 BH584   2017-09-20 02:00:00   03:59:59     0   0     
##  3 BH584   2017-09-20 04:00:00   05:59:59    32   0.133 
##  4 BH584   2017-09-20 06:00:00   07:59:59    78   0.325 
##  5 BH584   2017-09-20 08:00:00   09:59:59    36   0.15  
##  6 BH584   2017-09-20 10:00:00   11:59:59    18   0.075 
##  7 BH584   2017-09-20 12:00:00   13:59:59    10   0.0417
##  8 BH584   2017-09-20 14:00:00   15:59:59    62   0.258 
##  9 BH584   2017-09-20 16:00:00   17:59:59    49   0.204 
## 10 BH584   2017-09-20 18:00:00   19:59:59    21   0.0875
## # ℹ 1,066,137 more rows

Add the colony and deployment_period values from metrics_md to deg_props_2hrs

deg_props_2hrs <- deg_props_2hrs %>%
  left_join(metrics_md %>% select(bird_id, deployment_period, colony), by = "bird_id") %>%
      filter(deployment_period != "2023-2024")